Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A recursive eigenspace computation for the Canonical Polyadic decomposition (2112.08303v1)

Published 15 Dec 2021 in math.NA and cs.NA

Abstract: The canonical polyadic decomposition (CPD) is a compact decomposition which expresses a tensor as a sum of its rank-1 components. A common step in the computation of a CPD is computing a generalized eigenvalue decomposition (GEVD) of the tensor. A GEVD provides an algebraic approximation of the CPD which can then be used as an initialization in optimization routines. While in the noiseless setting GEVD exactly recovers the CPD, it has recently been shown that pencil-based computations such as GEVD are not stable. In this article we present an algebraic method for approximation of a CPD which greatly improves on the accuracy of GEVD. Our method is still fundamentally pencil-based; however, rather than using a single pencil and computing all of its generalized eigenvectors, we use many different pencils and in each pencil compute generalized eigenspaces corresponding to sufficiently well-separated generalized eigenvalues. The resulting "generalized eigenspace decomposition" is significantly more robust to noise than the classical GEVD. Accuracy of the generalized eigenspace decomposition is examined both empirically and theoretically. In particular, we provide a deterministic perturbation theoretic bound which is predictive of error in the computed factorization.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.