Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards Controllable Agent in MOBA Games with Generative Modeling (2112.08093v1)

Published 15 Dec 2021 in cs.LG and cs.AI

Abstract: We propose novel methods to develop action controllable agent that behaves like a human and has the ability to align with human players in Multiplayer Online Battle Arena (MOBA) games. By modeling the control problem as an action generation process, we devise a deep latent alignment neural network model for training agent, and a corresponding sampling algorithm for controlling an agent's action. Particularly, we propose deterministic and stochastic attention implementations of the core latent alignment model. Both simulated and online experiments in the game Honor of Kings demonstrate the efficacy of the proposed methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)