Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Named entity recognition architecture combining contextual and global features (2112.08033v1)

Published 15 Dec 2021 in cs.CL

Abstract: Named entity recognition (NER) is an information extraction technique that aims to locate and classify named entities (e.g., organizations, locations,...) within a document into predefined categories. Correctly identifying these phrases plays a significant role in simplifying information access. However, it remains a difficult task because named entities (NEs) have multiple forms and they are context-dependent. While the context can be represented by contextual features, global relations are often misrepresented by those models. In this paper, we propose the combination of contextual features from XLNet and global features from Graph Convolution Network (GCN) to enhance NER performance. Experiments over a widely-used dataset, CoNLL 2003, show the benefits of our strategy, with results competitive with the state of the art (SOTA).

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.