Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 225 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fast Computation of Generalized Eigenvectors for Manifold Graph Embedding (2112.07862v2)

Published 15 Dec 2021 in eess.SP and cs.LG

Abstract: Our goal is to efficiently compute low-dimensional latent coordinates for nodes in an input graph -- known as graph embedding -- for subsequent data processing such as clustering. Focusing on finite graphs that are interpreted as uniform samples on continuous manifolds (called manifold graphs), we leverage existing fast extreme eigenvector computation algorithms for speedy execution. We first pose a generalized eigenvalue problem for sparse matrix pair $(\A,\B)$, where $\A = \L - \mu \Q + \epsilon \I$ is a sum of graph Laplacian $\L$ and disconnected two-hop difference matrix $\Q$. Eigenvector $\v$ minimizing Rayleigh quotient $\frac{\v{\top} \A \v}{\v{\top} \v}$ thus minimizes $1$-hop neighbor distances while maximizing distances between disconnected $2$-hop neighbors, preserving graph structure. Matrix $\B = \text{diag}({\b_i})$ that defines eigenvector orthogonality is then chosen so that boundary / interior nodes in the sampling domain have the same generalized degrees. $K$-dimensional latent vectors for the $N$ graph nodes are the first $K$ generalized eigenvectors for $(\A,\B)$, computed in $\cO(N)$ using LOBPCG, where $K \ll N$. Experiments show that our embedding is among the fastest in the literature, while producing the best clustering performance for manifold graphs.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.