Papers
Topics
Authors
Recent
2000 character limit reached

Reinforced Abstractive Summarization with Adaptive Length Controlling (2112.07534v5)

Published 14 Dec 2021 in cs.CL

Abstract: Document summarization, as a fundamental task in natural language generation, aims to generate a short and coherent summary for a given document. Controllable summarization, especially of the length, is an important issue for some practical applications, especially how to trade-off the length constraint and information integrity. In this paper, we propose an \textbf{A}daptive \textbf{L}ength \textbf{C}ontrolling \textbf{O}ptimization (\textbf{ALCO}) method to leverage two-stage abstractive summarization model via reinforcement learning. ALCO incorporates length constraint into the stage of sentence extraction to penalize the overlength extracted sentences. Meanwhile, a saliency estimation mechanism is designed to preserve the salient information in the generated sentences. A series of experiments have been conducted on a wildly-used benchmark dataset \textit{CNN/Daily Mail}. The results have shown that ALCO performs better than the popular baselines in terms of length controllability and content preservation.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.