Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving COVID-19 CXR Detection with Synthetic Data Augmentation (2112.07529v1)

Published 14 Dec 2021 in eess.IV, cs.CV, and cs.LG

Abstract: Since the beginning of the COVID-19 pandemic, researchers have developed deep learning models to classify COVID-19 induced pneumonia. As with many medical imaging tasks, the quality and quantity of the available data is often limited. In this work we train a deep learning model on publicly available COVID-19 image data and evaluate the model on local hospital chest X-ray data. The data has been reviewed and labeled by two radiologists to ensure a high quality estimation of the generalization capabilities of the model. Furthermore, we are using a Generative Adversarial Network to generate synthetic X-ray images based on this data. Our results show that using those synthetic images for data augmentation can improve the model's performance significantly. This can be a promising approach for many sparse data domains.

Citations (5)

Summary

We haven't generated a summary for this paper yet.