Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting (2112.07459v1)

Published 14 Dec 2021 in cs.LG

Abstract: Multivariate time series (MTS) forecasting has attracted much attention in many intelligent applications. It is not a trivial task, as we need to consider both intra-variable dependencies and inter-variable dependencies. However, existing works are designed for specific scenarios, and require much domain knowledge and expert efforts, which is difficult to transfer between different scenarios. In this paper, we propose a scale-aware neural architecture search framework for MTS forecasting (SNAS4MTF). A multi-scale decomposition module transforms raw time series into multi-scale sub-series, which can preserve multi-scale temporal patterns. An adaptive graph learning module infers the different inter-variable dependencies under different time scales without any prior knowledge. For MTS forecasting, a search space is designed to capture both intra-variable dependencies and inter-variable dependencies at each time scale. The multi-scale decomposition, adaptive graph learning, and neural architecture search modules are jointly learned in an end-to-end framework. Extensive experiments on two real-world datasets demonstrate that SNAS4MTF achieves a promising performance compared with the state-of-the-art methods.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com