Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Towards A Reliable Ground-Truth For Biased Language Detection (2112.07421v2)

Published 14 Dec 2021 in cs.CL

Abstract: Reference texts such as encyclopedias and news articles can manifest biased language when objective reporting is substituted by subjective writing. Existing methods to detect bias mostly rely on annotated data to train machine learning models. However, low annotator agreement and comparability is a substantial drawback in available media bias corpora. To evaluate data collection options, we collect and compare labels obtained from two popular crowdsourcing platforms. Our results demonstrate the existing crowdsourcing approaches' lack of data quality, underlining the need for a trained expert framework to gather a more reliable dataset. By creating such a framework and gathering a first dataset, we are able to improve Krippendorff's $\alpha$ = 0.144 (crowdsourcing labels) to $\alpha$ = 0.419 (expert labels). We conclude that detailed annotator training increases data quality, improving the performance of existing bias detection systems. We will continue to extend our dataset in the future.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.