Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Semi-Supervised Variational User Identity Linkage via Noise-Aware Self-Learning (2112.07373v1)

Published 14 Dec 2021 in cs.SI

Abstract: User identity linkage, which aims to link identities of a natural person across different social platforms, has attracted increasing research interest recently. Existing approaches usually first embed the identities as deterministic vectors in a shared latent space, and then learn a classifier based on the available annotations. However, the formation and characteristics of real-world social platforms are full of uncertainties, which makes these deterministic embedding based methods sub-optimal. In addition, it is intractable to collect sufficient linkage annotations due to the tremendous gaps between different platforms. Semi-supervised models utilize the unlabeled data to help capture the intrinsic data distribution, which are more promising in practical usage. However, the existing semi-supervised linkage methods heavily rely on the heuristically defined similarity measurements to incorporate the innate closeness between labeled and unlabeled samples. Such manually designed assumptions may not be consistent with the actual linkage signals and further introduce the noises. To address the mentioned limitations, in this paper we propose a novel Noise-aware Semi-supervised Variational User Identity Linkage (NSVUIL) model. Specifically, we first propose a novel supervised linkage module to incorporate the available annotations. Each social identity is represented by a Gaussian distribution in the Wasserstein space to simultaneously preserve the fine-grained social profiles and model the uncertainty of identities. Then, a noise-aware self-learning module is designed to faithfully augment the few available annotations, which is capable of filtering noises from the pseudo-labels generated by the supervised module.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube