Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Embedding-based Music Emotion Recognition Using Composite Loss (2112.07192v5)

Published 14 Dec 2021 in cs.SD, cs.HC, cs.MM, and eess.AS

Abstract: Most music emotion recognition approaches perform classification or regression that estimates a general emotional category from a distribution of music samples, but without considering emotional variations (e.g., happiness can be further categorised into much, moderate or little happiness). We propose an embedding-based music emotion recognition approach that associates music samples with emotions in a common embedding space by considering both general emotional categories and fine-grained discrimination within each category. Since the association of music samples with emotions is uncertain due to subjective human perceptions, we compute composite loss-based embeddings obtained to maximise two statistical characteristics, one being the correlation between music samples and emotions based on canonical correlation analysis, and the other being a probabilistic similarity between a music sample and an emotion with KL-divergence. The experiments on two benchmark datasets demonstrate the effectiveness of our embedding-based approach, the composite loss and learned acoustic features. In addition, detailed analysis shows that our approach can accomplish robust bidirectional music emotion recognition that not only identifies music samples matching with a specific emotion but also detects emotions expressed in a certain music sample.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.