Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An Adaptive Graph Pre-training Framework for Localized Collaborative Filtering (2112.07191v1)

Published 14 Dec 2021 in cs.IR and cs.AI

Abstract: Graph neural networks (GNNs) have been widely applied in the recommendation tasks and have obtained very appealing performance. However, most GNN-based recommendation methods suffer from the problem of data sparsity in practice. Meanwhile, pre-training techniques have achieved great success in mitigating data sparsity in various domains such as NLP and computer vision (CV). Thus, graph pre-training has the great potential to alleviate data sparsity in GNN-based recommendations. However, pre-training GNNs for recommendations face unique challenges. For example, user-item interaction graphs in different recommendation tasks have distinct sets of users and items, and they often present different properties. Therefore, the successful mechanisms commonly used in NLP and CV to transfer knowledge from pre-training tasks to downstream tasks such as sharing learned embeddings or feature extractors are not directly applicable to existing GNN-based recommendations models. To tackle these challenges, we delicately design an adaptive graph pre-training framework for localized collaborative filtering (ADAPT). It does not require transferring user/item embeddings, and is able to capture both the common knowledge across different graphs and the uniqueness for each graph. Extensive experimental results have demonstrated the effectiveness and superiority of ADAPT.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.