Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

MuxLink: Circumventing Learning-Resilient MUX-Locking Using Graph Neural Network-based Link Prediction (2112.07178v1)

Published 14 Dec 2021 in cs.CR

Abstract: Logic locking has received considerable interest as a prominent technique for protecting the design intellectual property from untrusted entities, especially the foundry. Recently, ML-based attacks have questioned the security guarantees of logic locking, and have demonstrated considerable success in deciphering the secret key without relying on an oracle, hence, proving to be very useful for an adversary in the fab. Such ML-based attacks have triggered the development of learning-resilient locking techniques. The most advanced state-of-the-art deceptive MUX-based locking (D-MUX) and the symmetric MUX-based locking techniques have recently demonstrated resilience against existing ML-based attacks. Both defense techniques obfuscate the design by inserting key-controlled MUX logic, ensuring that all the secret inputs to the MUXes are equiprobable. In this work, we show that these techniques primarily introduce local and limited changes to the circuit without altering the global structure of the design. By leveraging this observation, we propose a novel graph neural network (GNN)-based link prediction attack, MuxLink, that successfully breaks both the D-MUX and symmetric MUX-locking techniques, relying only on the underlying structure of the locked design, i.e., in an oracle-less setting. Our trained GNN model learns the structure of the given circuit and the composition of gates around the non-obfuscated wires, thereby generating meaningful link embeddings that help decipher the secret inputs to the MUXes. The proposed MuxLink achieves key prediction accuracy and precision up to 100% on D-MUX and symmetric MUX-locked ISCAS-85 and ITC-99 benchmarks, fully unlocking the designs. We open-source MuxLink [1].

Citations (28)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube