Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Hop-Spanners for Geometric Intersection Graphs (2112.07158v4)

Published 14 Dec 2021 in cs.CG and math.CO

Abstract: A $t$-spanner of a graph $G=(V,E)$ is a subgraph $H=(V,E')$ that contains a $uv$-path of length at most $t$ for every $uv\in E$. It is known that every $n$-vertex graph admits a $(2k-1)$-spanner with $O(n{1+1/k})$ edges for $k\geq 1$. This bound is the best possible for $1\leq k\leq 9$ and is conjectured to be optimal due to Erd\H{o}s' girth conjecture. We study $t$-spanners for $t\in {2,3}$ for geometric intersection graphs in the plane. These spanners are also known as \emph{$t$-hop spanners} to emphasize the use of graph-theoretic distances (as opposed to Euclidean distances between the geometric objects or their centers). We obtain the following results: (1) Every $n$-vertex unit disk graph (UDG) admits a 2-hop spanner with $O(n)$ edges; improving upon the previous bound of $O(n\log n)$. (2) The intersection graph of $n$ axis-aligned fat rectangles admits a 2-hop spanner with $O(n\log n)$ edges, and this bound is tight up to a factor of $\log \log n$. (3) The intersection graph of $n$ fat convex bodies in the plane admits a 3-hop spanner with $O(n\log n)$ edges. (4) The intersection graph of $n$ axis-aligned rectangles admits a 3-hop spanner with $O(n\log2 n)$ edges.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube