Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Teaching a Robot to Walk Using Reinforcement Learning (2112.07031v1)

Published 13 Dec 2021 in cs.LG and cs.RO

Abstract: Classical control techniques such as PID and LQR have been used effectively in maintaining a system state, but these techniques become more difficult to implement when the model dynamics increase in complexity and sensitivity. For adaptive robotic locomotion tasks with several degrees of freedom, this task becomes infeasible with classical control techniques. Instead, reinforcement learning can train optimal walking policies with ease. We apply deep Q-learning and augmented random search (ARS) to teach a simulated two-dimensional bipedal robot how to walk using the OpenAI Gym BipedalWalker-v3 environment. Deep Q-learning did not yield a high reward policy, often prematurely converging to suboptimal local maxima likely due to the coarsely discretized action space. ARS, however, resulted in a better trained robot, and produced an optimal policy which officially "solves" the BipedalWalker-v3 problem. Various naive policies, including a random policy, a manually encoded inch forward policy, and a stay still policy, were used as benchmarks to evaluate the proficiency of the learning algorithm results.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.