Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Event-guided Deblurring of Unknown Exposure Time Videos (2112.06988v3)

Published 13 Dec 2021 in cs.CV

Abstract: Motion deblurring is a highly ill-posed problem due to the loss of motion information in the blur degradation process. Since event cameras can capture apparent motion with a high temporal resolution, several attempts have explored the potential of events for guiding deblurring. These methods generally assume that the exposure time is the same as the reciprocal of the video frame rate. However, this is not true in real situations, and the exposure time might be unknown and dynamically varies depending on the video shooting environment(e.g., illumination condition). In this paper, we address the event-guided motion deblurring assuming dynamically variable unknown exposure time of the frame-based camera. To this end, we first derive a new formulation for event-guided motion deblurring by considering the exposure and readout time in the video frame acquisition process. We then propose a novel end-to-end learning framework for event-guided motion deblurring. In particular, we design a novel Exposure Time-based Event Selection(ETES) module to selectively use event features by estimating the cross-modal correlation between the features from blurred frames and the events. Moreover, we propose a feature fusion module to fuse the selected features from events and blur frames effectively. We conduct extensive experiments on various datasets and demonstrate that our method achieves state-of-the-art performance.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.