Papers
Topics
Authors
Recent
2000 character limit reached

Implementing a Category-Theoretic Framework for Typed Abstract Syntax (2112.06984v1)

Published 13 Dec 2021 in cs.PL and math.CT

Abstract: In previous work ("From signatures to monads in UniMath"), we described a category-theoretic construction of abstract syntax from a signature, mechanized in the UniMath library based on the Coq proof assistant. In the present work, we describe what was necessary to generalize that work to account for simply-typed languages. First, some definitions had to be generalized to account for the natural appearance of non-endofunctors in the simply-typed case. As it turns out, in many cases our mechanized results carried over to the generalized definitions without any code change. Second, an existing mechanized library on $\omega$-cocontinuous functors had to be extended by constructions and theorems necessary for constructing multi-sorted syntax. Third, the theoretical framework for the semantical signatures had to be generalized from a monoidal to a bicategorical setting, again to account for non-endofunctors arising in the typed case. This uses actions of endofunctors on functors with given source, and the corresponding notion of strong functors between actions, all formalized in UniMath using a recently developed library of bicategory theory. We explain what needed to be done to plug all of these ingredients together, modularly. The main result of our work is a general construction that, when fed with a signature for a simply-typed language, returns an implementation of that language together with suitable boilerplate code, in particular, a certified monadic substitution operation.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.