Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CGAN-EB: A Non-parametric Empirical Bayes Method for Crash Hotspot Identification Using Conditional Generative Adversarial Networks: A Simulated Crash Data Study (2112.06925v1)

Published 13 Dec 2021 in cs.LG

Abstract: In this paper, a new non-parametric empirical Bayes approach called CGAN-EB is proposed for approximating empirical Bayes (EB) estimates in traffic locations (e.g., road segments) which benefits from the modeling advantages of deep neural networks, and its performance is compared in a simulation study with the traditional approach based on negative binomial model (NB-EB). The NB-EB uses negative binomial model in order to model the crash data and is the most common approach in practice. To model the crash data in the proposed CGAN-EB, conditional generative adversarial network is used, which is a powerful deep neural network based method that can model any types of distributions. A number of simulation experiments are designed and conducted to evaluate the CGAN-EB performance in different conditions and compare it with the NB-EB. The results show that CGAN-EB performs as well as NB-EB when conditions favor the NB-EB model (i.e. data conform to the assumptions of the NB model) and outperforms NB-EB in experiments reflecting conditions frequently encountered in practice, specifically low sample means, and when crash frequency does not follow a log-linear relationship with covariates.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Mohammad Zarei (6 papers)
  2. Bruce Hellinga (3 papers)
  3. Pedram Izadpanah (2 papers)

Summary

We haven't generated a summary for this paper yet.