Emergent Mind

Abstract

Recent years have seen a rapid rise of artificial neural networks being employed in a number of cognitive tasks. The ever-increasing computing requirements of these structures have contributed to a desire for novel technologies and paradigms, including memristor-based hardware accelerators. Solutions based on memristive crossbars and analog data processing promise to improve the overall energy efficiency. However, memristor nonidealities can lead to the degradation of neural network accuracy, while the attempts to mitigate these negative effects often introduce design trade-offs, such as those between power and reliability. In this work, we design nonideality-aware training of memristor-based neural networks capable of dealing with the most common device nonidealities. We demonstrate the feasibility of using high-resistance devices that exhibit high $I$-$V$ nonlinearity -- by analyzing experimental data and employing nonideality-aware training, we estimate that the energy efficiency of memristive vector-matrix multipliers is improved by three orders of magnitude ($0.715\ \mathrm{TOPs}{-1}\mathrm{W}{-1}$ to $381\ \mathrm{TOPs}{-1}\mathrm{W}{-1}$) while maintaining similar accuracy. We show that associating the parameters of neural networks with individual memristors allows to bias these devices towards less conductive states through regularization of the corresponding optimization problem, while modifying the validation procedure leads to more reliable estimates of performance. We demonstrate the universality and robustness of our approach when dealing with a wide range of nonidealities.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.