Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Khmer Text Classification Using Word Embedding and Neural Networks (2112.06748v1)

Published 13 Dec 2021 in cs.CL

Abstract: Text classification is one of the fundamental tasks in natural language processing to label an open-ended text and is useful for various applications such as sentiment analysis. In this paper, we discuss various classification approaches for Khmer text, ranging from a classical TF-IDF algorithm with support vector machine classifier to modern word embedding-based neural network classifiers including linear layer model, recurrent neural network and convolutional neural network. A Khmer word embedding model is trained on a 30-million-Khmer-word corpus to construct word vector representations that are used to train three different neural network classifiers. We evaluate the performance of different approaches on a news article dataset for both multi-class and multi-label text classification tasks. The result suggests that neural network classifiers using a word embedding model consistently outperform the traditional classifier using TF-IDF. The recurrent neural network classifier provides a slightly better result compared to the convolutional network and the linear layer network.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.