Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning Semantic-Aligned Feature Representation for Text-based Person Search (2112.06714v1)

Published 13 Dec 2021 in cs.CV, cs.AI, and cs.MM

Abstract: Text-based person search aims to retrieve images of a certain pedestrian by a textual description. The key challenge of this task is to eliminate the inter-modality gap and achieve the feature alignment across modalities. In this paper, we propose a semantic-aligned embedding method for text-based person search, in which the feature alignment across modalities is achieved by automatically learning the semantic-aligned visual features and textual features. First, we introduce two Transformer-based backbones to encode robust feature representations of the images and texts. Second, we design a semantic-aligned feature aggregation network to adaptively select and aggregate features with the same semantics into part-aware features, which is achieved by a multi-head attention module constrained by a cross-modality part alignment loss and a diversity loss. Experimental results on the CUHK-PEDES and Flickr30K datasets show that our method achieves state-of-the-art performances.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.