Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SphereSR: 360° Image Super-Resolution with Arbitrary Projection via Continuous Spherical Image Representation (2112.06536v2)

Published 13 Dec 2021 in cs.CV

Abstract: The 360{\deg}imaging has recently gained great attention; however, its angular resolution is relatively lower than that of a narrow field-of-view (FOV) perspective image as it is captured by using fisheye lenses with the same sensor size. Therefore, it is beneficial to super-resolve a 360{\deg}image. Some attempts have been made but mostly considered the equirectangular projection (ERP) as one of the way for 360{\deg}image representation despite of latitude-dependent distortions. In that case, as the output high-resolution(HR) image is always in the same ERP format as the low-resolution (LR) input, another information loss may occur when transforming the HR image to other projection types. In this paper, we propose SphereSR, a novel framework to generate a continuous spherical image representation from an LR 360{\deg}image, aiming at predicting the RGB values at given spherical coordinates for super-resolution with an arbitrary 360{\deg}image projection. Specifically, we first propose a feature extraction module that represents the spherical data based on icosahedron and efficiently extracts features on the spherical surface. We then propose a spherical local implicit image function (SLIIF) to predict RGB values at the spherical coordinates. As such, SphereSR flexibly reconstructs an HR image under an arbitrary projection type. Experiments on various benchmark datasets show that our method significantly surpasses existing methods.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.