Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Algorithmic Bayesian persuasion with combinatorial actions (2112.06282v1)

Published 12 Dec 2021 in cs.GT and cs.DS

Abstract: Bayesian persuasion is a model for understanding strategic information revelation: an agent with an informational advantage, called a sender, strategically discloses information by sending signals to another agent, called a receiver. In algorithmic Bayesian persuasion, we are interested in efficiently designing the sender's signaling schemes that lead the receiver to take action in favor of the sender. This paper studies algorithmic Bayesian-persuasion settings where the receiver's feasible actions are specified by combinatorial constraints, e.g., matroids or paths in graphs. We first show that constant-factor approximation is NP-hard even in some special cases of matroids or paths. We then propose a polynomial-time algorithm for general matroids by assuming the number of states of nature to be a constant. We finally consider a relaxed notion of persuasiveness, called CCE-persuasiveness, and present a sufficient condition for polynomial-time approximability.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.