Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Fast computation of distance-generalized cores using sampling (2112.06154v2)

Published 12 Dec 2021 in cs.DS

Abstract: Core decomposition is a classic technique for discovering densely connected regions in a graph with large range of applications. Formally, a $k$-core is a maximal subgraph where each vertex has at least $k$ neighbors. A natural extension of a $k$-core is a $(k, h)$-core, where each node must have at least $k$ nodes that can be reached with a path of length $h$. The downside in using $(k, h)$-core decomposition is the significant increase in the computational complexity: whereas the standard core decomposition can be done in $O(m)$ time, the generalization can require $O(n2m)$ time, where $n$ and $m$ are the number of nodes and edges in the given graph. In this paper we propose a randomized algorithm that produces an $\epsilon$-approximation of $(k, h)$ core decomposition with a probability of $1 - \delta$ in $O(\epsilon{-2} hm (\log2 n - \log \delta))$ time. The approximation is based on sampling the neighborhoods of nodes, and we use Chernoff bound to prove the approximation guarantee. We also study distance-generalized dense subgraphs, show that the problem is NP-hard, provide an algorithm for discovering such graphs with approximate core decompositions, and provide theoretical guarantees for the quality of the discovered subgraphs. We demonstrate empirically that approximating the decomposition complements the exact computation: computing the approximation is significantly faster than computing the exact solution for the networks where computing the exact solution is slow

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.