Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

An Empirical Study on Relation Extraction in the Biomedical Domain (2112.05910v1)

Published 11 Dec 2021 in cs.CL and cs.LG

Abstract: Relation extraction is a fundamental problem in natural language processing. Most existing models are defined for relation extraction in the general domain. However, their performance on specific domains (e.g., biomedicine) is yet unclear. To fill this gap, this paper carries out an empirical study on relation extraction in biomedical research articles. Specifically, we consider both sentence-level and document-level relation extraction, and run a few state-of-the-art methods on several benchmark datasets. Our results show that (1) current document-level relation extraction methods have strong generalization ability; (2) existing methods require a large amount of labeled data for model fine-tuning in biomedicine. Our observations may inspire people in this field to develop more effective models for biomedical relation extraction.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.