Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Neural Attention Models in Deep Learning: Survey and Taxonomy (2112.05909v1)

Published 11 Dec 2021 in cs.LG and cs.AI

Abstract: Attention is a state of arousal capable of dealing with limited processing bottlenecks in human beings by focusing selectively on one piece of information while ignoring other perceptible information. For decades, concepts and functions of attention have been studied in philosophy, psychology, neuroscience, and computing. Currently, this property has been widely explored in deep neural networks. Many different neural attention models are now available and have been a very active research area over the past six years. From the theoretical standpoint of attention, this survey provides a critical analysis of major neural attention models. Here we propose a taxonomy that corroborates with theoretical aspects that predate Deep Learning. Our taxonomy provides an organizational structure that asks new questions and structures the understanding of existing attentional mechanisms. In particular, 17 criteria derived from psychology and neuroscience classic studies are formulated for qualitative comparison and critical analysis on the 51 main models found on a set of more than 650 papers analyzed. Also, we highlight several theoretical issues that have not yet been explored, including discussions about biological plausibility, highlight current research trends, and provide insights for the future.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.