Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Smooth-Swap: A Simple Enhancement for Face-Swapping with Smoothness (2112.05907v2)

Published 11 Dec 2021 in cs.CV and cs.LG

Abstract: Face-swapping models have been drawing attention for their compelling generation quality, but their complex architectures and loss functions often require careful tuning for successful training. We propose a new face-swapping model called `Smooth-Swap', which excludes complex handcrafted designs and allows fast and stable training. The main idea of Smooth-Swap is to build smooth identity embedding that can provide stable gradients for identity change. Unlike the one used in previous models trained for a purely discriminative task, the proposed embedding is trained with a supervised contrastive loss promoting a smoother space. With improved smoothness, Smooth-Swap suffices to be composed of a generic U-Net-based generator and three basic loss functions, a far simpler design compared with the previous models. Extensive experiments on face-swapping benchmarks (FFHQ, FaceForensics++) and face images in the wild show that our model is also quantitatively and qualitatively comparable or even superior to the existing methods.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.