Papers
Topics
Authors
Recent
2000 character limit reached

Smooth-Swap: A Simple Enhancement for Face-Swapping with Smoothness (2112.05907v2)

Published 11 Dec 2021 in cs.CV and cs.LG

Abstract: Face-swapping models have been drawing attention for their compelling generation quality, but their complex architectures and loss functions often require careful tuning for successful training. We propose a new face-swapping model called `Smooth-Swap', which excludes complex handcrafted designs and allows fast and stable training. The main idea of Smooth-Swap is to build smooth identity embedding that can provide stable gradients for identity change. Unlike the one used in previous models trained for a purely discriminative task, the proposed embedding is trained with a supervised contrastive loss promoting a smoother space. With improved smoothness, Smooth-Swap suffices to be composed of a generic U-Net-based generator and three basic loss functions, a far simpler design compared with the previous models. Extensive experiments on face-swapping benchmarks (FFHQ, FaceForensics++) and face images in the wild show that our model is also quantitatively and qualitatively comparable or even superior to the existing methods.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.