Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Directed Speech Separation for Automatic Speech Recognition of Long Form Conversational Speech (2112.05863v3)

Published 10 Dec 2021 in eess.AS, cs.CL, cs.LG, cs.SD, and eess.SP

Abstract: Many of the recent advances in speech separation are primarily aimed at synthetic mixtures of short audio utterances with high degrees of overlap. Most of these approaches need an additional stitching step to stitch the separated speech chunks for long form audio. Since most of the approaches involve Permutation Invariant training (PIT), the order of separated speech chunks is nondeterministic and leads to difficulty in accurately stitching homogenous speaker chunks for downstream tasks like Automatic Speech Recognition (ASR). Also, most of these models are trained with synthetic mixtures and do not generalize to real conversational data. In this paper, we propose a speaker conditioned separator trained on speaker embeddings extracted directly from the mixed signal using an over-clustering based approach. This model naturally regulates the order of the separated chunks without the need for an additional stitching step. We also introduce a data sampling strategy with real and synthetic mixtures which generalizes well to real conversation speech. With this model and data sampling technique, we show significant improvements in speaker-attributed word error rate (SA-WER) on Hub5 data.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.