Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Unified Multimodal Pre-training and Prompt-based Tuning for Vision-Language Understanding and Generation (2112.05587v2)

Published 10 Dec 2021 in cs.CV, cs.CL, and cs.LG

Abstract: Most existing vision-language pre-training methods focus on understanding tasks and use BERT-like objectives (masked LLMing and image-text matching) during pretraining. Although they perform well in many understanding downstream tasks, e.g., visual question answering, image-text retrieval and visual entailment, they do not possess the ability to generate. To tackle this problem, we propose Unified multimodal pre-training for both Vision-Language understanding and generation (UniVL). The proposed UniVL is capable of handling both understanding tasks and generative tasks. We augment existing pretraining paradigms that only use random masks with causal masks, i.e., triangular masks that mask out future tokens, such that the pre-trained models can have autoregressive generation abilities by design. We formulate several previous understanding tasks as a text generation task and propose to use prompt-based method for fine-tuning on different downstream tasks. Our experiments show that there is a trade-off between understanding tasks and generation tasks while using the same model, and a feasible way to improve both tasks is to use more data. Our UniVL framework attains comparable performance to recent vision-language pre-training methods on both understanding tasks and generation tasks. Moreover, we demostrate that prompt-based finetuning is more data-efficient - it outperforms discriminative methods in few-shot scenarios.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com