Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Collaborative Learning over Wireless Networks: An Introductory Overview (2112.05559v1)

Published 7 Dec 2021 in cs.LG, cs.DC, and eess.SP

Abstract: In this chapter, we will mainly focus on collaborative training across wireless devices. Training a ML model is equivalent to solving an optimization problem, and many distributed optimization algorithms have been developed over the last decades. These distributed ML algorithms provide data locality; that is, a joint model can be trained collaboratively while the data available at each participating device remains local. This addresses, to some extend, the privacy concern. They also provide computational scalability as they allow exploiting computational resources distributed across many edge devices. However, in practice, this does not directly lead to a linear gain in the overall learning speed with the number of devices. This is partly due to the communication bottleneck limiting the overall computation speed. Additionally, wireless devices are highly heterogeneous in their computational capabilities, and both their computation speed and communication rate can be highly time-varying due to physical factors. Therefore, distributed learning algorithms, particularly those to be implemented at the wireless network edge, must be carefully designed taking into account the impact of time-varying communication network as well as the heterogeneous and stochastic computation capabilities of devices.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.