Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Universal computation using localized limit-cycle attractors in neural networks (2112.05558v1)

Published 10 Dec 2021 in cs.ET, cond-mat.dis-nn, cs.NE, nlin.AO, and nlin.CD

Abstract: Neural networks are dynamical systems that compute with their dynamics. One example is the Hopfield model, forming an associative memory which stores patterns as global attractors of the network dynamics. From studies of dynamical networks it is well known that localized attractors also exist. Yet, they have not been used in computing paradigms. Here we show that interacting localized attractors in threshold networks can result in universal computation. We develop a rewiring algorithm that builds universal Boolean gates in a biologically inspired two-dimensional threshold network with randomly placed and connected nodes using collision-based computing. We aim at demonstrating the computational capabilities and the ability to control local limit cycle attractors in such networks by creating simple Boolean gates by means of these local activations. The gates use glider guns, i.e., localized activity that periodically generates "gliders" of activity that propagate through space. Several such gliders are made to collide, and the result of their interaction is used as the output of a Boolean gate. We show that these gates can be used to build a universal computer.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.