Papers
Topics
Authors
Recent
2000 character limit reached

Music demixing with the sliCQ transform (2112.05509v1)

Published 9 Dec 2021 in cs.SD and eess.AS

Abstract: Music source separation is the task of extracting an estimate of one or more isolated sources or instruments (for example, drums or vocals) from musical audio. The task of music demixing or unmixing considers the case where the musical audio is separated into an estimate of all of its constituent sources that can be summed back to the original mixture. The Music Demixing Challenge was created to inspire new demixing research. Open-Unmix (UMX), and the improved variant CrossNet-Open-Unmix (X-UMX), were included in the challenge as the baselines. Both models use the Short-Time Fourier Transform (STFT) as the representation of music signals. The time-frequency uncertainty principle states that the STFT of a signal cannot have maximal resolution in both time and frequency. The tradeoff in time-frequency resolution can significantly affect music demixing results. Our proposed adaptation of UMX replaced the STFT with the sliCQT, a time-frequency transform with varying time-frequency resolution. Unfortunately, our model xumx-sliCQ achieved lower demixing scores than UMX.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.