Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Sparse Depth Completion with Semantic Mesh Deformation Optimization (2112.05498v1)

Published 10 Dec 2021 in cs.CV

Abstract: Sparse depth measurements are widely available in many applications such as augmented reality, visual inertial odometry and robots equipped with low cost depth sensors. Although such sparse depth samples work well for certain applications like motion tracking, a complete depth map is usually preferred for broader applications, such as 3D object recognition, 3D reconstruction and autonomous driving. Despite the recent advancements in depth prediction from single RGB images with deeper neural networks, the existing approaches do not yield reliable results for practical use. In this work, we propose a neural network with post-optimization, which takes an RGB image and sparse depth samples as input and predicts the complete depth map. We make three major contributions to advance the state-of-the-art: an improved backbone network architecture named EDNet, a semantic edge-weighted loss function and a semantic mesh deformation optimization method. Our evaluation results outperform the existing work consistently on both indoor and outdoor datasets, and it significantly reduces the mean average error by up to 19.5% under the same settings of 200 sparse samples on NYU-Depth-V2 dataset.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube