Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Monitoring and Adapting the Physical State of a Camera for Autonomous Vehicles (2112.05456v3)

Published 10 Dec 2021 in cs.CV and eess.IV

Abstract: Autonomous vehicles and robots require increasingly more robustness and reliability to meet the demands of modern tasks. These requirements specially apply to cameras onboard such vehicles because they are the predominant sensors to acquire information about the environment and support actions. Cameras must maintain proper functionality and take automatic countermeasures if necessary. Existing solutions are typically tailored to specific problems or detached from the downstream computer vision tasks of the machines, which, however, determine the requirements on the quality of the produced camera images. We propose a generic and task-oriented self-health-maintenance framework for cameras based on data- and physically-grounded models. To this end, we determine two reliable, real-time capable estimators for typical image effects of a camera in poor condition (blur, noise phenomena and most common combinations) by evaluating traditional and customized machine learning-based approaches in extensive experiments. Furthermore, we implement the framework on a real-world ground vehicle and demonstrate how a camera can adjust its parameters to counter an identified poor condition to achieve optimal application capability based on experimental (non-linear and non-monotonic) input-output performance curves. Object detection is chosen as target application, and the image effects motion blur and sensor noise as conditioning examples. Our framework not only provides a practical ready-to-use solution to monitor and maintain the health of cameras, but can also serve as a basis for extensions to tackle more sophisticated problems that combine additional data sources (e.g., sensor or environment parameters) empirically in order to attain fully reliable and robust machines. Code: https://github.com/MaikWischow/Camera-Condition-Monitoring

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.