Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Numerical methods for Mean field Games based on Gaussian Processes and Fourier Features (2112.05414v3)

Published 10 Dec 2021 in math.NA, cs.NA, and math.OC

Abstract: In this article, we propose two numerical methods, the Gaussian Process (GP) method and the Fourier Features (FF) algorithm, to solve mean field games (MFGs). The GP algorithm approximates the solution of a MFG with maximum a posteriori probability estimators of GPs conditioned on the partial differential equation (PDE) system of the MFG at a finite number of sample points. The main bottleneck of the GP method is to compute the inverse of a square gram matrix, whose size is proportional to the number of sample points. To improve the performance, we introduce the FF method, whose insight comes from the recent trend of approximating positive definite kernels with random Fourier features. The FF algorithm seeks approximated solutions in the space generated by sampled Fourier features. In the FF method, the size of the matrix to be inverted depends only on the number of Fourier features selected, which is much less than the size of sample points. Hence, the FF method reduces the precomputation time, saves the memory, and achieves comparable accuracy to the GP method. We give the existence and the convergence proofs for both algorithms. The convergence argument of the GP method does not depend on any monotonicity condition, which suggests the potential applications of the GP method to solve MFGs with non-monotone couplings in future work. We show the efficacy of our algorithms through experiments on a stationary MFG with a non-local coupling and on a time-dependent planning problem. We believe that the FF method can also serve as an alternative algorithm to solve general PDEs.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube