Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regularity theory and numerical algorithm for the fractional Klein-Kramers equation (2112.05357v1)

Published 10 Dec 2021 in math.NA and cs.NA

Abstract: Fractional Klein-Kramers equation can well describe subdiffusion in phase space. In this paper, we develop the fully discrete scheme for fractional Klein-Kramers equation based on the backward Euler convolution quadrature and local discontinuous Galerkin methods. Thanks to the obtained sharp regularity estimates in temporal and spatial directions after overcoming the hypocoercivity of the operator, the complete error analyses of the fully discrete scheme are built. % , the main challenge of which comes from the hypocoercivity of the operator. It's worth mentioning that the convergence of the provided scheme is independent of the temporal regularity of the exact solution. Finally, numerical results are proposed to verify the correctness of the theoretical results.

Summary

We haven't generated a summary for this paper yet.