Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Self-Ensemling for 3D Point Cloud Domain Adaption (2112.05301v2)

Published 10 Dec 2021 in cs.CV

Abstract: Recently 3D point cloud learning has been a hot topic in computer vision and autonomous driving. Due to the fact that it is difficult to manually annotate a qualitative large-scale 3D point cloud dataset, unsupervised domain adaptation (UDA) is popular in 3D point cloud learning which aims to transfer the learned knowledge from the labeled source domain to the unlabeled target domain. However, the generalization and reconstruction errors caused by domain shift with simply-learned model are inevitable which substantially hinder the model's capability from learning good representations. To address these issues, we propose an end-to-end self-ensembling network (SEN) for 3D point cloud domain adaption tasks. Generally, our SEN resorts to the advantages of Mean Teacher and semi-supervised learning, and introduces a soft classification loss and a consistency loss, aiming to achieve consistent generalization and accurate reconstruction. In SEN, a student network is kept in a collaborative manner with supervised learning and self-supervised learning, and a teacher network conducts temporal consistency to learn useful representations and ensure the quality of point clouds reconstruction. Extensive experiments on several 3D point cloud UDA benchmarks show that our SEN outperforms the state-of-the-art methods on both classification and segmentation tasks. Moreover, further analysis demonstrates that our SEN also achieves better reconstruction results.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.