Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

7th AI Driving Olympics: 1st Place Report for Panoptic Tracking (2112.05210v1)

Published 9 Dec 2021 in cs.CV, cs.LG, and cs.RO

Abstract: In this technical report, we describe our EfficientLPT architecture that won the panoptic tracking challenge in the 7th AI Driving Olympics at NeurIPS 2021. Our architecture builds upon the top-down EfficientLPS panoptic segmentation approach. EfficientLPT consists of a shared backbone with a modified EfficientNet-B5 model comprising the proximity convolution module as the encoder followed by the range-aware FPN to aggregate semantically rich range-aware multi-scale features. Subsequently, we employ two task-specific heads, the scale-invariant semantic head and hybrid task cascade with feedback from the semantic head as the instance head. Further, we employ a novel panoptic fusion module to adaptively fuse logits from each of the heads to yield the panoptic tracking output. Our approach exploits three consecutive accumulated scans to predict locally consistent panoptic tracking IDs and also the overlap between the scans to predict globally consistent panoptic tracking IDs for a given sequence. The benchmarking results from the 7th AI Driving Olympics at NeurIPS 2021 show that our model is ranked #1 for the panoptic tracking task on the Panoptic nuScenes dataset.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.