Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Improved approximation algorithms for two Euclidean k-Center variants (2112.05083v1)

Published 9 Dec 2021 in cs.DS and cs.CG

Abstract: The $k$-Center problem is one of the most popular clustering problems. After decades of work, the complexity of most of its variants on general metrics is now well understood. Surprisingly, this is not the case for a natural setting that often arises in practice, namely the Euclidean setting, in which the input points are points in $\mathbb{R}d$, and the distance between them is the standard $\ell_2$ Euclidean distance. In this work, we study two Euclidean $k$-Center variants, the Matroid Center problem on the real line and the Robust Euclidean $k$-Supplier problem, and provide algorithms that improve upon the best approximation guarantees known for these problems. In particular, we present a simple $2.5$-approximation algorithm for the Matroid Center problem on the real line, thus improving upon the $3$-approximation factor algorithm of Chen, Li, Liang, and Wang (2016) that works for general metrics. Moreover, we present a $(1 + \sqrt{3})$-approximation algorithm for the Robust Euclidean $k$-Supplier problem, thus improving upon the state-of-the-art $3$-approximation algorithm for Robust $k$-Supplier on general metrics and matching the best approximation factor known for the non-robust setting by Nagarajan, Schieber and Shachnai (2020).

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.