Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Polynomial XL: A Variant of the XL Algorithm Using Macaulay Matrices over Polynomial Rings (2112.05023v2)

Published 9 Dec 2021 in cs.SC, cs.CR, and math.AC

Abstract: Solving a system of $m$ multivariate quadratic equations in $n$ variables over finite fields (the MQ problem) is one of the important problems in the theory of computer science. The XL algorithm (XL for short) is a major approach for solving the MQ problem with linearization over a coefficient field. Furthermore, the hybrid approach with XL (h-XL) is a variant of XL guessing some variables beforehand. In this paper, we present a variant of h-XL, which we call the \textit{polynomial XL (PXL)}. In PXL, the whole $n$ variables are divided into $k$ variables to be fixed and the remaining $n-k$ variables as ``main variables'', and we generate a Macaulay matrix with respect to the $n-k$ main variables over a polynomial ring of the $k$ (sub-)variables. By eliminating some columns of the Macaulay matrix over the polynomial ring before guessing $k$ variables, the amount of operations required for each guessed value can be reduced compared with h-XL. Our complexity analysis of PXL (under some practical assumptions and heuristics) gives a new theoretical bound, and it indicates that PXL could be more efficient than other algorithms in theory on the random system with $n=m$, which is the case of general multivariate signatures. For example, on systems over the finite field with ${28}$ elements with $n=m=80$, the numbers of operations deduced from the theoretical bounds of the hybrid approaches with XL and Wiedemann XL, Crossbred, and PXL with optimal $k$ are estimated as $2{252}$, $2{234}$, $2{237}$, and $2{220}$, respectively.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: