Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polynomial XL: A Variant of the XL Algorithm Using Macaulay Matrices over Polynomial Rings (2112.05023v2)

Published 9 Dec 2021 in cs.SC, cs.CR, and math.AC

Abstract: Solving a system of $m$ multivariate quadratic equations in $n$ variables over finite fields (the MQ problem) is one of the important problems in the theory of computer science. The XL algorithm (XL for short) is a major approach for solving the MQ problem with linearization over a coefficient field. Furthermore, the hybrid approach with XL (h-XL) is a variant of XL guessing some variables beforehand. In this paper, we present a variant of h-XL, which we call the \textit{polynomial XL (PXL)}. In PXL, the whole $n$ variables are divided into $k$ variables to be fixed and the remaining $n-k$ variables as ``main variables'', and we generate a Macaulay matrix with respect to the $n-k$ main variables over a polynomial ring of the $k$ (sub-)variables. By eliminating some columns of the Macaulay matrix over the polynomial ring before guessing $k$ variables, the amount of operations required for each guessed value can be reduced compared with h-XL. Our complexity analysis of PXL (under some practical assumptions and heuristics) gives a new theoretical bound, and it indicates that PXL could be more efficient than other algorithms in theory on the random system with $n=m$, which is the case of general multivariate signatures. For example, on systems over the finite field with ${28}$ elements with $n=m=80$, the numbers of operations deduced from the theoretical bounds of the hybrid approaches with XL and Wiedemann XL, Crossbred, and PXL with optimal $k$ are estimated as $2{252}$, $2{234}$, $2{237}$, and $2{220}$, respectively.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com