X-Vector based voice activity detection for multi-genre broadcast speech-to-text (2112.05016v1)
Abstract: Voice Activity Detection (VAD) is a fundamental preprocessing step in automatic speech recognition. This is especially true within the broadcast industry where a wide variety of audio materials and recording conditions are encountered. Based on previous studies which indicate that xvector embeddings can be applied to a diverse set of audio classification tasks, we investigate the suitability of x-vectors in discriminating speech from noise. We find that the proposed x-vector based VAD system achieves the best reported score in detecting clean speech on AVA-Speech, whilst retaining robust VAD performance in the presence of noise and music. Furthermore, we integrate the x-vector based VAD system into an existing STT pipeline and compare its performance on multiple broadcast datasets against a baseline system with WebRTC VAD. Crucially, our proposed x-vector based VAD improves the accuracy of STT transcription on real-world broadcast audio
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.