Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

X-Vector based voice activity detection for multi-genre broadcast speech-to-text (2112.05016v1)

Published 9 Dec 2021 in eess.AS and cs.SD

Abstract: Voice Activity Detection (VAD) is a fundamental preprocessing step in automatic speech recognition. This is especially true within the broadcast industry where a wide variety of audio materials and recording conditions are encountered. Based on previous studies which indicate that xvector embeddings can be applied to a diverse set of audio classification tasks, we investigate the suitability of x-vectors in discriminating speech from noise. We find that the proposed x-vector based VAD system achieves the best reported score in detecting clean speech on AVA-Speech, whilst retaining robust VAD performance in the presence of noise and music. Furthermore, we integrate the x-vector based VAD system into an existing STT pipeline and compare its performance on multiple broadcast datasets against a baseline system with WebRTC VAD. Crucially, our proposed x-vector based VAD improves the accuracy of STT transcription on real-world broadcast audio

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)