Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Few-Shot NLU with Vector Projection Distance and Abstract Triangular CRF (2112.04999v1)

Published 9 Dec 2021 in cs.CL

Abstract: Data sparsity problem is a key challenge of Natural Language Understanding (NLU), especially for a new target domain. By training an NLU model in source domains and applying the model to an arbitrary target domain directly (even without fine-tuning), few-shot NLU becomes crucial to mitigate the data scarcity issue. In this paper, we propose to improve prototypical networks with vector projection distance and abstract triangular Conditional Random Field (CRF) for the few-shot NLU. The vector projection distance exploits projections of contextual word embeddings on label vectors as word-label similarities, which is equivalent to a normalized linear model. The abstract triangular CRF learns domain-agnostic label transitions for joint intent classification and slot filling tasks. Extensive experiments demonstrate that our proposed methods can significantly surpass strong baselines. Specifically, our approach can achieve a new state-of-the-art on two few-shot NLU benchmarks (Few-Joint and SNIPS) in Chinese and English without fine-tuning on target domains.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.