Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Nice perfume. How long did you marinate in it? Multimodal Sarcasm Explanation (2112.04873v1)

Published 9 Dec 2021 in cs.CL

Abstract: Sarcasm is a pervading linguistic phenomenon and highly challenging to explain due to its subjectivity, lack of context and deeply-felt opinion. In the multimodal setup, sarcasm is conveyed through the incongruity between the text and visual entities. Although recent approaches deal with sarcasm as a classification problem, it is unclear why an online post is identified as sarcastic. Without proper explanation, end users may not be able to perceive the underlying sense of irony. In this paper, we propose a novel problem -- Multimodal Sarcasm Explanation (MuSE) -- given a multimodal sarcastic post containing an image and a caption, we aim to generate a natural language explanation to reveal the intended sarcasm. To this end, we develop MORE, a new dataset with explanation of 3510 sarcastic multimodal posts. Each explanation is a natural language (English) sentence describing the hidden irony. We benchmark MORE by employing a multimodal Transformer-based architecture. It incorporates a cross-modal attention in the Transformer's encoder which attends to the distinguishing features between the two modalities. Subsequently, a BART-based auto-regressive decoder is used as the generator. Empirical results demonstrate convincing results over various baselines (adopted for MuSE) across five evaluation metrics. We also conduct human evaluation on predictions and obtain Fleiss' Kappa score of 0.4 as a fair agreement among 25 evaluators.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.