Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

GPU backed Data Mining on Android Devices (2112.04800v1)

Published 9 Dec 2021 in cs.DC and cs.LG

Abstract: Choosing an appropriate programming paradigm for high-performance computing on low-power devices can be useful to speed up calculations. Many Android devices have an integrated GPU and - although not officially supported - the OpenCL framework can be used on Android devices for addressing these GPUs. OpenCL supports thread and data parallelism. Applications that use the GPU must account for the fact that they can be suspended by the user or the Android operating system at any moment. We have created a wrapper library that allows to use OpenCL on Android devices. Already written OpenCL programs can be executed with almost no modification. We have used this library to compare the performance of the DBSCAN and Kmeans algorithms on an integrated GPU of an Arm-v7 tablet with other single and multithreaded implementations on the same device. We have investigated which programming paradigm and language allows the best tradeoff between execution speed and energy consumption. Using the GPU for HPC on Android devices can help to carry out computationally intensive machine learning or data mining tasks in remote areas, under harsh environmental conditions and in areas where energy supply is an issue.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.