LipSound2: Self-Supervised Pre-Training for Lip-to-Speech Reconstruction and Lip Reading (2112.04748v2)
Abstract: The aim of this work is to investigate the impact of crossmodal self-supervised pre-training for speech reconstruction (video-to-audio) by leveraging the natural co-occurrence of audio and visual streams in videos. We propose LipSound2 which consists of an encoder-decoder architecture and location-aware attention mechanism to map face image sequences to mel-scale spectrograms directly without requiring any human annotations. The proposed LipSound2 model is firstly pre-trained on $\sim$2400h multi-lingual (e.g. English and German) audio-visual data (VoxCeleb2). To verify the generalizability of the proposed method, we then fine-tune the pre-trained model on domain-specific datasets (GRID, TCD-TIMIT) for English speech reconstruction and achieve a significant improvement on speech quality and intelligibility compared to previous approaches in speaker-dependent and -independent settings. In addition to English, we conduct Chinese speech reconstruction on the CMLR dataset to verify the impact on transferability. Lastly, we train the cascaded lip reading (video-to-text) system by fine-tuning the generated audios on a pre-trained speech recognition system and achieve state-of-the-art performance on both English and Chinese benchmark datasets.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.