Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Asynchronous Semi-Decentralized Federated Edge Learning for Heterogeneous Clients (2112.04737v1)

Published 9 Dec 2021 in cs.NI and cs.LG

Abstract: Federated edge learning (FEEL) has drawn much attention as a privacy-preserving distributed learning framework for mobile edge networks. In this work, we investigate a novel semi-decentralized FEEL (SD-FEEL) architecture where multiple edge servers collaborate to incorporate more data from edge devices in training. Despite the low training latency enabled by fast edge aggregation, the device heterogeneity in computational resources deteriorates the efficiency. This paper proposes an asynchronous training algorithm for SD-FEEL to overcome this issue, where edge servers can independently set deadlines for the associated client nodes and trigger the model aggregation. To deal with different levels of staleness, we design a staleness-aware aggregation scheme and analyze its convergence performance. Simulation results demonstrate the effectiveness of our proposed algorithm in achieving faster convergence and better learning performance.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.