Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Unsupervised Complementary-aware Multi-process Fusion for Visual Place Recognition (2112.04701v1)

Published 9 Dec 2021 in cs.CV

Abstract: A recent approach to the Visual Place Recognition (VPR) problem has been to fuse the place recognition estimates of multiple complementary VPR techniques simultaneously. However, selecting the optimal set of techniques to use in a specific deployment environment a-priori is a difficult and unresolved challenge. Further, to the best of our knowledge, no method exists which can select a set of techniques on a frame-by-frame basis in response to image-to-image variations. In this work, we propose an unsupervised algorithm that finds the most robust set of VPR techniques to use in the current deployment environment, on a frame-by-frame basis. The selection of techniques is determined by an analysis of the similarity scores between the current query image and the collection of database images and does not require ground-truth information. We demonstrate our approach on a wide variety of datasets and VPR techniques and show that the proposed dynamic multi-process fusion (Dyn-MPF) has superior VPR performance compared to a variety of challenging competitive methods, some of which are given an unfair advantage through access to the ground-truth information.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.