Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Unsupervised Complementary-aware Multi-process Fusion for Visual Place Recognition (2112.04701v1)

Published 9 Dec 2021 in cs.CV

Abstract: A recent approach to the Visual Place Recognition (VPR) problem has been to fuse the place recognition estimates of multiple complementary VPR techniques simultaneously. However, selecting the optimal set of techniques to use in a specific deployment environment a-priori is a difficult and unresolved challenge. Further, to the best of our knowledge, no method exists which can select a set of techniques on a frame-by-frame basis in response to image-to-image variations. In this work, we propose an unsupervised algorithm that finds the most robust set of VPR techniques to use in the current deployment environment, on a frame-by-frame basis. The selection of techniques is determined by an analysis of the similarity scores between the current query image and the collection of database images and does not require ground-truth information. We demonstrate our approach on a wide variety of datasets and VPR techniques and show that the proposed dynamic multi-process fusion (Dyn-MPF) has superior VPR performance compared to a variety of challenging competitive methods, some of which are given an unfair advantage through access to the ground-truth information.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.