Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Safe Autonomous Navigation for Systems with Learned SE(3) Hamiltonian Dynamics (2112.04639v2)

Published 9 Dec 2021 in cs.RO, cs.SY, and eess.SY

Abstract: Safe autonomous navigation in unknown environments is an important problem for mobile robots. This paper proposes techniques to learn the dynamics model of a mobile robot from trajectory data and synthesize a tracking controller with safety and stability guarantees. The state of a rigid-body robot usually contains its position, orientation, and generalized velocity and satisfies Hamilton's equations of motion. Instead of a hand-derived dynamics model, we use a dataset of state-control trajectories to train a translation-equivariant nonlinear Hamiltonian model represented as a neural ordinary differential equation (ODE) network. The learned Hamiltonian model is used to synthesize an energy-shaping passivity-based controller and derive conditions which guarantee safe regulation to a desired reference pose. We enable adaptive tracking of a desired path, subject to safety constraints obtained from obstacle distance measurements. The trade-off between the robot's energy and the distance to safety constraint violation is used to adaptively govern a reference pose along the desired path. Our safe adaptive controller is demonstrated on a simulated hexarotor robot navigating in an unknown environments.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.