Papers
Topics
Authors
Recent
2000 character limit reached

Mixed membership distribution-free model (2112.04389v5)

Published 4 Dec 2021 in cs.SI, cs.LG, physics.soc-ph, and stat.ML

Abstract: We consider the problem of community detection in overlapping weighted networks, where nodes can belong to multiple communities and edge weights can be finite real numbers. To model such complex networks, we propose a general framework - the mixed membership distribution-free (MMDF) model. MMDF has no distribution constraints of edge weights and can be viewed as generalizations of some previous models, including the well-known mixed membership stochastic blockmodels. Especially, overlapping signed networks with latent community structures can also be generated from our model. We use an efficient spectral algorithm with a theoretical guarantee of convergence rate to estimate community memberships under the model. We also propose the fuzzy weighted modularity to evaluate the quality of community detection for overlapping weighted networks with positive and negative edge weights. We then provide a method to determine the number of communities for weighted networks by taking advantage of our fuzzy weighted modularity. Numerical simulations and real data applications are carried out to demonstrate the usefulness of our mixed membership distribution-free model and our fuzzy weighted modularity.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.