Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Which images to label for few-shot medical landmark detection? (2112.04386v3)

Published 7 Dec 2021 in eess.IV, cs.CV, and cs.LG

Abstract: The success of deep learning methods relies on the availability of well-labeled large-scale datasets. However, for medical images, annotating such abundant training data often requires experienced radiologists and consumes their limited time. Few-shot learning is developed to alleviate this burden, which achieves competitive performances with only several labeled data. However, a crucial yet previously overlooked problem in few-shot learning is about the selection of template images for annotation before learning, which affects the final performance. We herein propose a novel Sample Choosing Policy (SCP) to select "the most worthy" images for annotation, in the context of few-shot medical landmark detection. SCP consists of three parts: 1) Self-supervised training for building a pre-trained deep model to extract features from radiological images, 2) Key Point Proposal for localizing informative patches, and 3) Representative Score Estimation for searching the most representative samples or templates. The advantage of SCP is demonstrated by various experiments on three widely-used public datasets. For one-shot medical landmark detection, its use reduces the mean radial errors on Cephalometric and HandXray datasets by 14.2% (from 3.595mm to 3.083mm) and 35.5% (4.114mm to 2.653mm), respectively.

Citations (22)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com