Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Faster Algorithms for $k$-Subset Sum and Variations (2112.04244v2)

Published 8 Dec 2021 in cs.DS

Abstract: We present new, faster pseudopolynomial time algorithms for the $k$-Subset Sum problem, defined as follows: given a set $Z$ of $n$ positive integers and $k$ targets $t_1, \ldots, t_k$, determine whether there exist $k$ disjoint subsets $Z_1,\dots,Z_k \subseteq Z$, such that $\Sigma(Z_i) = t_i$, for $i = 1, \ldots, k$. Assuming $t = \max { t_1, \ldots, t_k }$ is the maximum among the given targets, a standard dynamic programming approach based on BeLLMan's algorithm [Bell57] can solve the problem in $O(n tk)$ time. We build upon recent advances on Subset Sum due to Koiliaris and Xu [Koil19] and Bringmann [Brin17] in order to provide faster algorithms for $k$-Subset Sum. We devise two algorithms: a deterministic one of time complexity $\tilde{O}(n{k / (k+1)} tk)$ and a randomised one of $\tilde{O}(n + tk)$ complexity. Additionally, we show how these algorithms can be modified in order to incorporate cardinality constraints enforced on the solution subsets. We further demonstrate how these algorithms can be used in order to cope with variations of $k$-Subset Sum, namely Subset Sum Ratio, $k$-Subset Sum Ratio and Multiple Subset Sum.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube